
4 Physical Random-Number Generators

4.1 Generalities

The doctrine in cryptology is that the algorithm of encryption is known to
the adversary (Eve) and that the only thing that is kept secret is the key,
which normally is a bitsequence or a sequence of natural numbers or el-
ements of a finite ring (e.g. a residue ring or a finite field). Mostly, such
key sequences are produced by an algorithmic generator (i.e., they are so-
called pseudo-random numbers), since these offer the following benefits: the
sequence of numbers can be reproduced for debugging and testing; no special
hardware is necessary; a large quantity of random numbers can be produced
in a short time. In Chapter 7, we will provide several tests of ”randomness”
of such pseudo-random sequences. However, there is no practically imple-
mentable ”universal” test of randomness: every test procedure just measures
a certain aspect of ”non-regularity”. If one wants to have genuine random
numbers, then they have to be produced by a physical device. A very drastic
drawback of classical pseudo-random generators has been pointed out in the
paper entitled ”Random numbers fall mainly in the planes” by Marsaglia
(1968). Possible physical random sources are electronic noise produced by a
semiconducting diode (Richter (1993)) or the impulses of a Geiger counter
in connection with a radioactive source (Inoue et al. (1983)). In the latter
paper, the authors propose a hardware implementation of this device, the
radioactive source consisting of a PG-508 pulse generator. Another device
using a Geiger counter has been described in Nisley (1990), the RM-60 Micro
Roentgen Radiation Monitor from Aware Electronics. Finally, there is HOT
BITS (see Walker (1996)), a source of random bits available via the Internet,
which uses beta radiation from the decay of Krypton-85.
The output of such a generator (which in the latter case leads directly to a
Poisson (for the number of events) resp. exponential (for the inter-occurence
waiting times) distribution) has to be processed further in order to obtain
standard uniform random numbers (digits, or reals in [0, 1]). Since the pa-
rameters of the distribution of the data is not known exactly, only a small
amount of this information is used (usually the last digit), to be on the safe
side, and so the yield of this method is relatively small. However, physically
generated random numbers are expensive and can not be produced in too
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48 4 Physical Random-Number Generators

high quantities. For example, the HOT BITS hardware produces only about
240 bits per second.
Modifying an idea of von Neumann (1963), used to extract unbiased bits from
a sequence of biased ones by comparison of two subsequent bits, we propose
to obtain random numbers in [0, 1] from a sequence X0, X1, X2, . . . of inde-
pendent exponentially distributed data by using Un := X2n

X2n+X2n+1
. This gives

us one real number for every two data values instead of only two bits, con-
siderably increasing the output. If the distribution of the Xn is exponential,
the Un are uniform in [0, 1]. The question of the ”rate of disappearing” of
the bias (so-called extraction rate) is addressed in Section 4.3, in particular
for rational biases b. It turns out that the size of b does not influence the
extraction rate, but that the latter is solely determined by the arithmetic
properties of b. On the other hand, the extraction rate can be shown to be 0
in Lebesgue-almost all cases.
In the practical implementation of this method we have to take into account
that the exponential times Xn can only be measured up to a certain precision.

4.2 Construction of Uniformly Distributed Random
Numbers from a Poisson Process

In this section, we will consider the output of a Geiger counter as source of
randomness. The other examples mentioned in the previous section are of a
similar nature. If the number of impulses during a fixed amount of time is
counted, a variable with a Poisson distribution is the raw material that has
to be processed further in order to obtain unbiased random bits. Usually, the
length t0 of the time interval is chosen large with respect to the mean time
1/θ between two impulses; then the number N of counts during this interval
has a Poisson distribution πλ with λ = t0θ. In most cases, the last digit X in
the binary representation of N is used as an approximation for a uniformly
distributed random bit.
Another method (see Inoue et al. (1983)) makes use of the random waiting
time T between two consecutive impulses, which obeys an exponential dis-
tribution εθ. Clearly, if the intensity θ > 0 were known exactly, one could
obtain a uniformly distributed random variable U just by the usual transform
method U := exp(−θT ). But θ not being known exactly enough to guarantee
that U is ”sufficiently” uniform, it has to be estimated. One can use two
consecutive waiting times produced by the Geiger counter, one so to say to
estimate θ and the other one to obtain a uniform random variable.
The following lemma is easy:

Lemma 4.1. Let X and Y be independent random variables with common
exponential distribution εθ (where θ > 0). Then



4.2 Construction of Uniformly Distributed Random Numbers 49

U :=
X

X + Y

obeys a uniform law on [0, 1].

Therefore if the raw material is a stream of independent exponential random
times Xn (n ∈ IN), a sequence of independent uniform variables can be
obtained by setting Un := X2n/(X2n +X2n+1).
Unfortunately the waiting time between two impulses of the Geiger counter
is not measured as a real number, but only in multiples of the length ∆ of
the clock cycle (w.l.o.g. we may assume ∆ = 1). If two impulses occur during
one clock cycle, then they are counted as one. Hence the n-th observation of
an impulse occurs at the time S′

n defined recursively by S′
0 := 0,

S′
n := min{k ∈ IN : Nk ≥ NS′

n−1
+ 1},

where the Poisson process {Nt}t≥0
1 indicates the number of impulses up

to time t. Instead of the sequence {Xn}n≥1 of exactly exponentially dis-
tributed waiting times between two impulses, we can only observe the se-
quence {X ′

n}n≥1, where X ′
n := S′

n − S′
n−1.

Proposition 4.1. The X ′
1, X

′
2, . . . are i.i.d. such that X ′

n − 1 obeys a geo-
metric distribution with parameter 1− exp(−θ).
Proof: Let {Ft}t≥0 denote the canonical filtration of the Poisson process
{Nt}t≥0. Then S′

1 < S′
2 < . . . is a sequence of stopping times. Assume n ≥ 2.

Since the Poisson process is stationary with independent increments, the
process {N ′

t}t≥0 with N ′
t := Nt+S′

n−1
−NS′

n−1
is again a Poisson process with

parameter θ. Therefore the distribution of

X ′
n = S′

n − S′
n−1 = min{k ∈ IN : N ′

k ≥ 1}

is the same as that of X ′
1. The latter law can easily be calculated to be the

geometric distribution with parameter

P (X ′
1 − 1 = 0) = P (X1 < 1) = 1− exp(−θ).

1 A stochastic process {Nt}t≥0 is called a Poisson process with intensity λ > 0 if
Nt obeys a Poisson distribution with parameter λt (t > 0). This is equivalent to
the fact that for the ”jump times”

Γ0 = 0 < Γ1 < Γ2 < . . .

(where Γk := inf{t ≥ 0 : Nt ≥ k}) we have that the ”inter-occurence times”
Γk+1 − Γk are i.i.d exponentially distributed random variables as

P (Γk+1 − Γk > x) = e−λx

for x ≥ 0.
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Furthermore, the process {N ′
t}t≥0 and hence the random variable X ′

n is inde-
pendent of FS′

n−1
. On the other hand, the random variablesX ′

1, X
′
2, . . . , X

′
n−1

are FS′
n−1

-measurable and hence independent of X ′
n. �

Denote by FX the distribution function of a random variable X .

Theorem 4.1. Let X ′ − 1, Y ′ − 1 be independent geometric random vari-
ables with parameter θ′ = 1 − exp(−θ) and denote by U a random variable
distributed uniformly on the interval [0, 1]. Then U ′ := X′−0.5

X′+Y ′−1 satisfies

1
2

tanh
(θ
2
) ≤ ||FU ′ − FU ||∞ ≤ 1− exp

(−θ
2
)
.

Proof: The lower bound follows from the observation that FU is continuous
at 1

2 whereas FU ′ has a jump of size P{U ′ = 1
2} =

∑
n P{X ′ = n}P{Y ′ =

n} =
∑∞

n=0 θ
′2(1− θ′)2n = θ′

2−θ′ = 1−exp(−θ)
1+exp(−θ) = tanh

(
θ
2

)
.

We will now assume w.l.o.g. that X ′ and Y ′ are of the form X ′ = �X� and
Y ′ = �Y � with X , Y independent and with exponential distribution with
parameter θ. Let U := X/(X +Y ). Since the distribution of U ′ is symmetric
about 1

2 it is easy to see that for the upper bound it is sufficient to show
|FU ′ (t)− t| ≤ 1− exp(−θ/2) only for t ∈]0, 1

2 ]. For such t we have

FU ′(t)− t = E
(
1[0,t](U ′)− 1[0,t](U)

)

=
∑

m,n∈IN

E
([

1[0,t]

( m+ 0.5
m+ n+ 1

)− 1[0,t](U)
]

·1{m<X<m+1, n<Y <n+1}
)

= S+ − S−,

where

S+ =
∑

m+0.5
m+n+1≤t, m+1

m+n+1>t

P (m < X < m+ 1, n < Y < n+ 1,
X

X + Y
> t)

and

S− =
∑

m+0.5
m+n+1>t, m

m+n+1<t

P (m < X < m+ 1, n < Y < n+ 1,
X

X + Y
≤ t).

The last equality follows from the fact that the random variable in the ex-
pectation takes only the values −1, 0, or 1, and all summands with either

m+1
m+n+1 ≤ t or m

m+n+1 ≥ t vanish, since the square ]m,m + 1[×]n, n+ 1[ lies
completely on one side of the line { x

x+y = t} in these cases.
We now collect the summands in S± that belong to the same m. Let
a := (1− t)/t ≥ 1; then x

x+y > t if and only if ax > y.
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From this we obtain

S+ =
∞∑

m=0

P (X < m+ 1, Y > nm, aX > Y )

and

S− =
∞∑

m=0

P (X > m, Y < nm, aX ≤ Y ),

where nm is the smallest n ∈ IN with m+0.5
m+n+1 ≤ t. Considering a single

summand we have

P (X > m, Y < nm, aX ≤ Y )
≤ P (m < X < m+ (1/2), am < Y < nm)
= c · P (m < X < m+ 1, am < Y < nm)

with

c := P (m < X < m+ (1/2))/P (m < X < m+ 1) =
(
1 + exp

(−θ
2
))−1

.

In order to prove the latter inequality we have used the fact that the density
of P is a decreasing function of x+ y and an elementary geometric argument
in the m− nm-plane. A similar argument yields

P (X< m+1, Y > nm, aX >Y ) ≤ c·P (m < X < m+1, nm < Y < a(m+1)).

Summing up, we obtain

S+ + S− ≤
∞∑

m=0

c · P (m < X < m+ 1, am < Y < nm)

+ c · P (m < X < m+ 1, nm < Y < a(m+ 1))

= c ·
∞∑

m=0

P (m < X < m+ 1, am < Y < a(m+ 1))

= c ·
∞∑

m=0

exp(−θ(a+ 1)m)(1− exp(−θ))(1 − exp(−aθ))

=
(1− exp(−θ))(1 − exp(−aθ))

(1 + exp(−θ/2))(1− exp(−(a+ 1)θ))
.

But since 1− exp(−aθ) ≤ 1− exp(−(a+ 1)θ)), we finally get the bound

|FU ′ (t)− t| = |S+ − S−| ≤ S+ + S− ≤ 1− exp
(−θ

2
)
,

and this proves Theorem 4.1. �

The upper and lower bounds 1− exp −θ
2 ≤ θ

2 and 1
2 tanh θ

2 ≈ θ
4 in Theorem

4.1 differ by a factor of approximately 2. As one can see from numerical
experiments, the lower of these is the true value, but the proof of this fact is
more complicated.
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4.3 *The Extraction Rate for Biased Random Bits

In this section, it will make things a little simpler (e.g., as we will see, we
can work with expectations) if we replace IB = {0, 1} by B := {1,−1}. Since
there will be no danger of misunderstanding, also the elements of B will be
called (random) ”bits”.
We want to investigate the following question: Given n i.i.d. random bits with
common bias b (i.e. P (X1 = 1)−P (X1 = −1) = E(X1) = b ∈]0, 1[ (w.l.o.g.)),
how is it possible to construct from them an ”as unbiased as possible” random
bit? It turns out that a good method is to multiply2 the Xi ∈ B, for if

Pn :=
n∏

i=1

Xi,

then the bias of Pn turns out to be only bn, i.e. P (Pn = 1)−P (Pn = −1) = bn.
One may ask if there are functions f : Bn → B that behave better (in the
sense of bias reduction) than multiplication. Let us define, for f and b as
defined before, the quantity

ξf,n(b) := |E(f(X1, X2, . . . , Xn))|

and
Ξn(b) := min

f :IBn→IB
ξf,n(b).

The relation ξ·,n(b) = bn (as mentioned before) can be interpreted as fol-
lows: For each new (independent b-biased) bit source Xn+1 combined with
the sources X1, X2, . . . , Xn, the multiplication-function ”extracts” another
factor b in the output bit Pn+1 (compared with Pn). So if we replace the
multiplication-function by an (asymptotically (as n→∞)) optimal function
f , we should have at least the extra multiplicative factor b for every step
n→ n+ 1 (i.e. by taking one additional bit source). Therefore, we define the
so-called extraction rate of b by

Ξ(b) := lim
n→∞

n
√
Ξn(b).

The extraction rate can be interpreted as the optimal asymptotic multiplica-
tive effect of each new input bit source on the resulting bias of the output
bit. Or - in other words - it is the asymptotical (as n → ∞) speed of the
diminution of the bias per new random bit source, when the final output
bit is produced by adding (mod.2) (in IB) n independent biased random
bit sources. It can be shown that for Lebesgue-almost all b ∈]0, 1[ we have
Ξ(b) = 0 (see Näslund, Russell (2001), Theorem 21). For rational b we have
the following:
2 If we identify B and IB in the natural way, then multiplication in B corresponds

to addition mod.2 in IB.



4.3 *The Extraction Rate for Biased Random Bits 53

Theorem 4.2. If b ∈ IQ, b = r
s , r, s ∈ IN , r, s relatively prime, then Ξ(b) = 1

s .

So interestingly enough, it is not the size of b, but rather its arithmetic
properties that determine its extraction rate!
Proof of Theorem 4.2: 1. We first prove that

Ξn(b) ≥ 1
sn
. (4.1)

Let us fix some notation. For a subset C ⊂ Bn, define its weight by

w(C) := P ((X1, X2, . . . , Xn) ∈ C),

and put

f(X1, X2, . . . , Xn) := 2(1(C)(X1, X2, . . . , Xn)− 1
2
).

Now consider a collection (subset) C ⊂ Bn with w(C) = 1+δ
2 , where |δ| is

the bias of f . W.l.o.g. we may suppose that (−1,−1, . . . ,−1) 
∈ C. Then we
may calculate

w(C) =
1 + δ

2

=
n∑

i=1

ti(
r

s
)i(1− r

s
)n−i

=
1
sn

n∑

i=1

tir
i(s− r)n−i

for some integers ti ∈ {0, 1, . . . ,
(
n
i

)}, or - equivalently -

sn(1 + δ) = 2
n∑

i=1

tir
i(s− r)n−i.

Since δ 
= 0 and b > 0 we have that r > 1 is a divisor of the right-hand side of
the above equality. Furthermore, we have supposed that r and s are relatively
prime. So the left-hand side must be an integer (since the right-hand side is)
and inequality (4.1) follows.
2. Now we turn to the other direction. We will construct a family of functions
fn : Bn → B with the property that

n
√
|E(fn(X1, X2, . . . , Xn))| → 1

s
. (4.2)

For this, we will prove the following lemma, which is also of some independent
interest. Then (4.1) and (4.2) will yield the result of Theorem 4.2. �
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Lemma 4.2. If b is as in Theorem 4.2, we have that

Ξ(b) ≤ 1
s
.

More precisely, for n > 2r + 1 we obtain

Ξn(b) ≤ 2r(s− r)2
sn

and there exists a (deterministic) polynomial-time algorithm for finding an
optimal f , such that

ξf,n(b) ≤ 2r(s− r)2
sn

.

Proof: Define q := s− r, so that we have q
s + r

s = 1. Since we have supposed
b > 0, it follows that r > q. Let B(n)

i be the i-th level of Bn, i.e. those elements
of Bn with Hamming weigth (number of ones) i. Let P (n)

i (b) denote the
probability that an element of Bn is equal to some fixed element of x ∈ B(n)

i .
This probability is indeed independent of the specific x and given by

P
(n)
i (b) = bi(1− b)n−i.

Hence in our case, we have

P
(n)
i (b) =

riqn−i

sn
.

We want to find collections Cn ⊂ Bn such that snw(Cn) is ”close” to sn

2 .
Then for the function

fn(X1, X2, . . . , Xn) := 2(1(Cn)(X1, X2, . . . , Xn)− 1
2
)

we will have that E(fn(X1, X2, . . . , Xn)) will be close to 0.
For this construction we proceed as follows: Define an initial collection

C̃n := B(n)
n ∪ B(n)

n−1 ∪ B(n)
n−2 ∪ T,

where T is a maximal subset of
⋃

i<n−2 B(n)
i for which |B(n)

j \T | ≥ r − 1
(for 1 ≤ j ≤ n − 3) and snw(C̃n) ≤ sn

2 . Now let us adjust this collection
suitably to bring its weight (multiplied by sn) closer to sn

2 . Since r > q and
P

(n)
i (b) < P

(n)
j (b) (for i < j) and by the maximality of T we get

|snw(C̃n)− �s
n

2
�| < snP

(n)
n−2(b) = rn−2q2.

Now consider the cyclic group ZZrn−2q2 and denote by π : ZZ → ZZrn−2q2 the
canonical projection. Since r and q are relatively prime, it follows that for
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every i > 2, the element π(rn−iqi) has order ri−2 in ZZrn−2q2 , so that we
obtain the following chain (or ”tower”) of subgroups of ZZrn−2q2 :

0 = 〈π(rn−2q2)〉 ⊂ 〈π(rn−3q3)〉 ⊂ . . . ⊂ 〈π(rqn−1)〉

(〈x〉 denotes the cyclic subgroup generated by x). All the groups in the above
chain have index r in the next one and the last one (〈π(rqn−1)〉) has index
rq2 in ZZrn−2q2 . Thus the group 〈π(rqn−1)〉 can be used to approximate every
element of ZZrn−2q2 to within an additive error of rq2. In particular for ∆ :=
π(� sn

2 � − snw(C̃n)), there exists an element ∆′ ∈ 〈π(rqn−1)〉 such that

∆−∆′ ∈ {π(0), π(1), . . . , π(rq2 − 1)}.

On the other hand, we of course may write∆′ =: cπ(rqn−1), so by well-known
algebraic facts (see Näslund, Russell (2001), p. 308) one has an equation

∆′ =
n−3∑

i=1

tiπ(riqn−i) ∈ 〈π(rqn−1)〉

with integers ti ∈ {0, 1, . . . , r − 1}. As r > q, we may ”lift” this equation to

�s
n

2
� =

n−3∑

i=1

tir
iqn−i −mrn−2q2 + w(C̃n)sn + E

(where m ≤ nr and E ∈ {0, 1, . . . , rq2−1} represents the error term). Now, if
we add ti elements of B(n)

i to C̃n and, on the other hand, remove m elements
of B(n)

n−2 from C̃n (which is possible as long as m <
(

n
n−2

)
, i.e. r < n−1

2 ), we
indeed obtain a new collection Cn with

snw(Cn)− �s
n

2
� < E.

Dividing this equation by sn yields

Ξn(b) ≤ 2rq2

sn

and the result follows (since each step of the above-described algorithm can
be carried out in polynomial time).�
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